Dominating induced matchings in graphs containing no long claw

نویسندگان

  • Alain Hertz
  • Vadim V. Lozin
  • Bernard Ries
  • Victor Zamaraev
  • Dominique de Werra
چکیده

An induced matching M in a graph G is dominating if every edge not in M shares exactly one vertex with an edge in M . The dominating induced matching problem (also known as efficient edge domination) asks whether a graph G contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special properties. In particular, it is solvable in polynomial time for claw-free graphs. In the present paper, we study this problem for graphs containing no long claw, i.e. no induced subgraph obtained from the claw by subdividing each of its edges exactly once. To solve the problem in this class, we reduce it to the following question: given a graph G and a subset of its vertices, does G contain a matching saturating all vertices of the subset? We show that this question can be answered in polynomial time, thus providing a polynomial-time algorithm to solve the dominating induced matching problem for graphs containing no long claw.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs

We prove that claw-free graphs, containing an induced dominating path, have a Hamiltonian path, and that 2-connected claw-free graphs, containing an induced doubly dominating cycle or a pair of vertices such that there exist two internally disjoint induced dominating paths connecting them, have a Hamiltonian cycle. As a consequence, we obtain linear time algorithms for both problems if the inpu...

متن کامل

Linear Time Algorithms or Hamiltonian Problems on (Claw, Net)-Free Graphs

We prove that claw-free graphs, containing an induced dominating path, have a Hamiltonian path, and that 2-connected claw-free graphs, containing an induced doubly dominating cycle or a pair of vertices such that there exist two internally disjoint induced dominating paths connecting them, have a Hamiltonian cycle. As a consequence, we obtain linear time algorithms for both problems if the inpu...

متن کامل

Paired-Domination in Subdivided Star-Free Graphs

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a paired-dominating set of G. In [1], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, ...

متن کامل

Paired-Domination in P 5-Free Graphs

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a paired-dominating set of G. In [?], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, ...

متن کامل

Finding Dominating Induced Matchings in (S2,2,3, S1,4,4)-Free Graphs in Polynomial Time

Let G = (V,E) be a finite undirected graph without loops and multiple edges. An edge set E ⊆ E is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E. In particular, this means that E is an induced matching, and every edge not in E shares exactly one vertex with an edge in E. Clearly, not every graph has a d.i.m. The Dominating Induced Matching...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.02558  شماره 

صفحات  -

تاریخ انتشار 2015